Complex Singularity Analysis for a Nonlinear PDE
نویسندگان
چکیده
منابع مشابه
Oxford Centre for Nonlinear PDE
— We prove uniqueness of the Kerr black holes within the connected, non-degenerate, analytic class of regular vacuum black holes. Résumé (Sur l’unicité de trous noirs stationnaires dans le vide). — On démontre l’unicité de trous noirs de Kerr dans la classe de trous noirs connexes, analytiques, réguliers, non-dégénérés, solutions des équations d’Einstein du vide.
متن کاملOxford Centre for Nonlinear PDE
We consider atomic chains with nearest neighbour interactions and study periodic and homoclinic travelling waves which are called wave trains and solitons, respectively. Our main result is a new existence proof which relies on the constrained maximisation of the potential energy and exploits the invariance properties of an improvement operator. The approach is restricted to convex interaction p...
متن کاملOxford Centre for Nonlinear PDE
For integral functionals initially defined for u ∈ W1,1 by Z
متن کاملOxford Centre for Nonlinear PDE
We consider a 3-dimensional conductor containing an inclusion that can be represented as a cylinder with fixed axis and a small basis. As the size of the basis of the cylinder approaches zero, the voltage perturbation can be described by means of a polarization tensor. We give an explicit characterization of the polarization tensor of cylindrical inclusions in terms of the polarization tensor o...
متن کاملTopological Sensitivity Analysis for Some Nonlinear Pde Systems
The aim of the topological sensitivity analysis is to determine an asymptotic expansion of a design functional when creating a small hole inside the domain. In this work, such an expansion is obtained for a certain class of nonlinear PDE systems of order 2 in dimensions 2 and 3 with a Dirichlet condition prescribed on the boundary of an arbitrarily shaped hole. Some examples of such operators a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2006
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605300500455941